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摘要 ：针对目前可调角度光束照明 - 尤其是车灯的不同角度的需求，将 Micro-LED 光源的出光角度调到合适的角度，

但现有的 Micro-LED 由于其小尺寸结构的因素，其出光角度比较大，跟目前车灯特定角度的要求不是很匹配。传统调光采

用透镜或者反射镜方式来调光，从物理原理上来说采用折射或者反射来调光，此技术必产生较多杂散光和界面光损失，本文

采用全反射调光方式，光学原理上可以避免调光界面光损失。本文针对这一难题，提出了倾斜封装体结构调节 Micro-LED

的出光角度，本文模拟计算了不同封装体高度对于 Micro-LED 出光角度和效率的影响，不同倾斜体角度对于 Micro-LED 出

光角度和出光效率的影响，不同倾斜体材料构成对于 Micro-LED 出光角度和出光效率的影响。最终本文通过设计多次侧面

全反射调光方式，避免了调光界面的光损失，实现了光源任意角度的调节。

基于 Micro-LED 芯片的可调角度
发光器件模拟计算
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1. 引言
对于不同的照明场景，需要光源的

出光角度也常常不同。多角度光束照明，
用途非常广泛，包括商品展示，深海集
鱼，舞台照明，摄像头辅助精准识别照明，
舞台灯，探照灯，车灯，路灯等用途 [1-10]。

目前部分小角度照明场景可以使用
激光光源来实现，但是激光价格昂贵，
需要配合复杂的光学调节系统和控制系
统，很多情况下实用性不太高。其中市
场规模比较大的是车灯照明，已经有名
企使用激光来照明 [11-16]。传统车灯的作
用主要用于车辆行进过程中，为司机照
明，为路人示警，但是不能实现信息化
显示和智能化显示。目前很多大厂发布
了基于激光或者 Micro-LED 的车灯产
品，通过像素光控制，可实现信息的相
互展示，比如说可以实现拐弯照明，人
行道照明，防眩光功能等信息化、智能
化特色照明。目前汽车大灯的产品多数
采用激光照明，比如说激光 +DMD 或者
激 光 +LBS 或 者 LED/OLED+LCD 等 方
式 [17-22,25]，其控制方式多采用扫描或者
LCD 的方式来显示，如果采用 LED 或
者 OLED 一般会结合微透镜阵列 [23,24]，
需要复杂的光学系统和控制系统，一般
辅助的光学系统或者控制系统都带来不
少的光损失，这些都导致了车灯价格很
昂贵，现有的信息化、智能化车灯多用
在高端的车型上。传统的路灯角度调节
多采用类似花生米的自由曲面透镜来实
现，对于加工工艺来说，需要高精度模具，
模具曲面复杂，精度要求高，透镜硬度高，
制作加工困难，需要大批量生产才能降
低成本。如果将自由曲面适用于车灯照
明，目前很多车的种类繁多，多数车的
某一型号的销量有限，很多只有几万辆、
几千辆，对于大批量降低成本有限，并
且如果车灯像素数比较多，如果透镜不
是直接刻蚀而成的，对于后期透镜的对
齐也存在难点。

为了将信息化、智能化车灯做到广
泛的普及，需要进行技术升级，进一步
地降低成本，简化车灯系统，提高可靠性。
其中可能的解决方案是采用 Micro-LED
车灯来解决，预计能实现低成本和高可
靠化，但是仍然有很多技术问题需要解
决。

其 中， 由 于 Micro-LED 小 尺 寸 参
数的原因，其芯片出光角度很大，很多
不同类型车灯需要不同角度照明，很多
角度都远远小于 Micro-LED 的出光角
度，两者相互矛盾，为了解决这一问题，
目前的解决方式是采用透镜的方式来实
现，一般透镜位于芯片之上，所以透镜
能收集的光线和调节的角度有限，侧面
的光很难搜集，且由于透镜距离芯片位
置比较近，导致杂散光比较多，造成了
光浪费，还降低了可靠性（因为透镜的
阵列匹配芯片的阵列具有很多的误差），
增加了成本，增加了体积，增加了重量
等缺点 [26-32]。

所以为了解决目前可调角度光束照
明 - 尤其是车灯照明的成本高，控制复杂，
低可靠性的难题，本文提出了一种基于
倾斜器件的方式来解决。本文模拟了不
同倾斜体高度对于 Micro-LED 的出光
效率和出光角度的影响，不同倾斜体角
度对于 Micro-LED 的出光效率和出光
角度的影响，不同倾斜体填充材料对于
Micro-LED 的出光效率和出光角度的影
响。

2. 实验仿真
2.1 Micro-LED 芯片结构和参数
本实验通过光线追迹法和蒙特卡洛

的方法，对基于 Micro-LED 芯片的倾斜
体封装进行了模拟计算。本实验模拟计
算的微米 LED 的结构如图 1 和图 2 所显
示， 包 括 ITO,P-GaN,MQW，N-GaN，
蓝宝石，其中蓝宝石采用 PSS 结构，以
上材料的折射率、吸收系数具体参数见
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图 1 Micro-LED 芯示意图

图 2 基于 Micro-LED 芯片的倾斜聚光器件的剖视图

表 1 ；本实验模拟计算倾斜体调光器件
的结构如图 3 所显示，包括底部中间位
置的芯片 6，以及芯片四周的倾斜体的
反射面 3，以及位于底部的较高折射率
的反射面 52 和 51，倾斜调光器件为底
部边长为 2mm，倾斜角度为 5 度至 25
度，倾斜体的长度为 10mm 至 300mm，
倾斜体底部的反射体的材料和倾斜体的
材料折射率、吸收系数具体参数见表 2。
ITO，P-GaN，MQW，N-GaN，蓝宝石，

其厚度、折射率和吸收系数如表 1 所显
示 [33-37]，其中 MQW 为量子阱，属于发
光层，芯片示意图如图 1，PSS 衬底的
半球，直径为 3 微米，PSS 阵列为 9*9
阵列，芯片的边长为 30 微米。

如图 2，基于 Micro-LED 芯片的倾
斜聚光器件的剖视图 ：发光芯片或者荧
光粉或者量子点或纳米散射颗粒或微米
散射颗粒或拉曼待测物质 6，位于器件
底部的反射面或位于器件底部和侧面的

反射面或位于器件底部和侧面下部的反
射面 5，具有特定角度的倾斜外侧面的
器件 3，具有底面 1 和顶面 2 面积数值
不同的器件，侧面 4, 反射面为底面 51，
器件外侧面 52。

从图中可以看出，从底部中心位置
芯片发出的光线，经过器件的外表面的
全反射作用，将光反射到正面，由于侧
面倾斜的反射将大角度的光偏折到正面，
并且减少了出光角度。
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表 1 Micro-LED 芯片的尺寸，折射率和吸收系数

表 2 倾斜调光器件的尺寸，折射率和吸收系数

Table 1 Size，refractive index and absorption coefficient of Micro-LED chips

Table 2 Size，refractive index and absorption coefficient of tilted Micro-LED chips

ITO

p-GaN

Activelayer

N-GaN

Al2O3

底部反射材料

倾斜体

300 nm

100 nm

100 nm

6.75 µm

30µm

0.3mm

10nm-300mm

1.5

2.45

2.54

2.45

1.7

1.5

1.605

0

2.3

25

2.3 

0.004

0

0.0078

Material

Material

Refractive index

Refractive index

Thickness

Thickness

Absorption index 
(mm-1)

Absorption index 
(mm-1)

2.2 基于 Micro-LED 芯片的围坝吸收器件阵列的模拟计算

图 3 倾斜体侧面角度在 5 度下，不同倾斜体长度下其调光器件的远场光分布

如图 2，基于 Micro-LED 芯片的倾
斜聚光器件的剖视图 ：发光芯片或者荧
光粉或者量子点或纳米散射颗粒或微米
散射颗粒或拉曼待测物质 6，位于器件
底部的反射面或位于器件底部和侧面的

反射面或位于器件底部和侧面下部的反
射面 5，具有特定角度的倾斜外侧面的
器件 3，具有底面 1 和顶面 2 面积数值
不同的器件，侧面 4, 反射面为底面 51，
器件外侧面 52。

从图中可以看出，从底部中心位置
芯片发出的光线，经过器件的外表面的
全反射作用，将光反射到正面，由于侧
面倾斜的反射将大角度的光偏折到正面，
并且减少了出光角度。
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表 3 不同部件长度对应的出光效率
Table 3 Light output efficiency corresponding to different parts of the length

20

40

60

80

150

300

>160且 <180

>140且 <160

>20且 <40

>20且 <40

<20

<20

0.568

0.497

0.462

0.432

0.343

0.262

器件的长度（mm） 出光角度（度） 出光效率

从 图 中 可 以 看 出， 随 着 倾 斜 体
高度的增加，其调光器件的出光角度
在 变 小， 其 出 光 效 率 在 降 低。 当 器 件
长 度 分 别 为 20、40、60、80、150、
300mm 时，其出光角度分别为 >160
度 且 <180 度、>140 度 且 <160 度、
>20 度 且 <40 度、>20 度 且 <40 度、

<20 度、<20 度，是因为在调光器件内
部 较 大 角 度 的 光， 被 侧 面 全 反 射， 改
变了较大角度的光的出射方向，具体
如图 3 所示，芯片出射较大角度 A1 的
光被全反射后，其角度变为了 A2，其
角 度 大 大 减 少 了。 其 出 光 效 率 降 低，
是因为随着倾斜体高度的增加，光在

器件内部走过的路径变长，由于器件
材料具有一定的吸收系数，会吸收部
分 的 光， 所 以 出 射 光 的 强 度 会 降 低。
表格 3 为不同器件长度对应的出光效
率，从表中可以看出，随着长度的增加，
出 光 效 率 降 低， 当 长 度 为 300mm 时
最小，当长度为 20mm 时最大。

图 4 倾斜体侧面角度在 5 度至 25 度下，倾斜体长度为 80mm 时，其调光器件的远场

表 4 不同部件倾角对应的出光效率
Table 4 Light output efficiency corresponding to the inclination of different parts

5

10

>20且 <40

>20且 <40

0.431

0.398

器件的长度（mm） 出光角度（度） 出光效率
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表 5 不同部件对应材料的出光效率
Table 5 Light output efficiency corresponding materials for different components

PMMA

Epoxy

Silica

>20且 <40

>20且 <40

>20且 <40

0.636

0.432

0.431

材料 出光角度（度） 出光效率

从 图 中 可 以 看 出， 改 变 调 光 器 件
的 材 料 时， 其 出 光 角 度 变 化 不 大， 但
是其包裹的面积变化较大，这是因为
三者的吸收系数不同，其中 PMMA 吸
收 系 数 最 小， 所 以 其 出 光 效 率 最 大，
Silica 的 吸 收 系 数 最 大， 所 以 其 出 光

效率最低，Epoxy 吸收系数处于两者
之间，所以其出光效率也处于两者中
间。 表 格 5 为 不 同 部 件 材 料 对 应 的 出
光效率，从表中可以看出，PMMA 材
料 的 器 件 的 出 光 效 率 最 高，Silica 材
料的器件的出光效率最小，Epoxy 材

料的器件的出光效率居中。当器件材
料分别为 PMMA、Epoxy、Silica 时，
其 出 光 角 度 分 别 为 >20 度 且 <40 度、
>20 度 且 <40 度、>20 度 且 <40 度，
可 以 看 出， 随 着 器 件 材 料 的 替 换， 其
出光角度不变。

从 图 中 可 以 发 现， 随 着 其 倾 斜
体侧面角度的变化，其出光角度和出
光效率都会变化。随着倾斜角度的减
少，其出光角度也减少，其出光效率
也会增加。当器件倾斜角度分别为 5、

10、15、20、25 度 时， 其 出 光 角 度
分 别 为 >20 度 且 <40 度、>20 度 且
<40 度、>40 度 且 <60 度、>60 度
且 <80 度、>80 度 且 <100 度， 芯 片
出射的光从侧面出射的更少，更多的

光被全反射从顶部出射了。表格 4 为
不同部件倾角对应的出光效率，从表
中可以看出，随着倾角的增加，出光
效率降低，当倾角为 25 度时最小，5
度时最大。

图 5 倾斜体侧面角度在 5 度下，倾斜体长度为 80mm 时，其倾斜体在不同填充物质下，其调光器件的远场光分布

15

20

25

>40且 <60

>60且 <80

>80且 <100

0.386

0.379

0.369
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3 分析与讨论 
综上所述，模拟了通过调节不同倾

斜封装体结构参数来调节 Micro-LED 的
出光角度和出光效率，通过器件的不同
参数，具体为器件的倾斜面角度、长度、
倾斜体吸收材料，可以设计任意出光角
度（0 度至 180 度）的器件。通过以上
数据可以发现，侧面全反射调光的光损
失也受限于材料的吸收系数，且随着需
要减少光束角度数值越大则损失也越大，
此技术需要选择合适的材料来实现光源
出光角度的调节。

4 结论
综上所述，模拟了通过调节不同倾

斜封装体结构参数来调节 Micro-LED 的
出光角度和出光效率，发现在相同高度
下，倾斜面角度越小，其出光角度越小，
出光效率越高 ；在相同角度，随着器件
高度的增加，其出光角度减小，其出光
效率减少 ；随着器件吸收系数的减少，
其调光器件的出光效率增加，但是出光
角度基本不变。所以可以通过器件倾斜
角度、器件长度来调节器件的出光角度
和出光效率，可以通过选择材料的吸收
系数来调节器件的出光效率。分析以上
模拟结果可以发现，通过设计合适的调
光器件的长度，倾斜角度等参数，可以
将光源的出光角度从小于 20 度调节到大
于 160 度且小于 180 度，可以满足不同
车灯对于车灯光源不同出光角度的要求。
相比较传统透镜的方式，本方法具有一
体化结构，可靠性高，不会存在普通透
镜的对齐和一致性难以解决等难点，也
能解决传统方式侧面漏光的缺点，且也
能大大降低杂散光的影响，具有良好的
技术优势和市场前景。   
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